
CHRISTENSEN ET AL. VOL. 8 ’ NO. 2 ’ 1745–1758 ’ 2014

www.acsnano.org

1745

January 17, 2014

C 2014 American Chemical Society

Nonlocal Response of Metallic
Nanospheres Probed by Light,
Electrons, and Atoms
Thomas Christensen,†,‡ Wei Yan,†,‡ Søren Raza,†,§ Antti-Pekka Jauho,‡,^ N. Asger Mortensen,†,‡ and

Martijn Wubs†,‡,*

†Department of Photonics Engineering, ‡Center for Nanostructured Graphene, §Center for Electron Nanoscopy, and ^Department of Micro- and Nanotechnology,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

A
plethora of effects arises in struc-
turedmetals due to collective excita-
tions of conduction electrons and

their interaction with the electromagnetic
field. This constitutes plasmonics, a research
field with mature roots1,2 that is continuing
to develop strongly.3 Notably, applications for
plasmonics are found in the biochemistry and
biomedical fields, such as in surface-enhanced

Raman spectroscopy (SERS),4 biosensing5 and
biomedical imaging,6 drug delivery,7 and
phototherapy of cancer cells.8 Purely photonic

applications are also emerging, for example,
in plasmonic waveguiding,9 optical nano-
antennas,10,11 and photovoltaics.12

Recent years' advances in fabrication,
synthesis, and characterization techniques
have allowed well-controlled experimental
investigations of plasmonics even at the
nanoscale. Yet in this growing field of nano-
plasmonics,3,13 the commonly employed
theory for light�matter interaction is still
traditional classical electrodynamics, where
the response of the material constituents to
light is described collectively in terms of local,

bulk material response functions. Indeed, this
approach usually remains very accurate, even
for subwavelength phenomena.
Interestingly, recent measurements on

individual few-nanometer plasmonic parti-
cles have shown phenomena that are
clearly beyond classical electrodynamics.
Electron energy loss spectroscopy (EELS)
of Ag spheres resting on dielectric sub-
strates showed surface plasmon resonance
blueshifts up to 0.5 eV as compared to
classical theory.14,15 Earlier similar measure-
ments were performed on ensembles of
nanoparticles.16 Classical electrodynamics
was also shown to fail in experiments invol-
ving (sub)nanometer-sized gaps between
dimers17�19 or between nanoparticles and
a substrate.20

To explain these features arising beyond
the validity of classical electrodynamics,
various physical mechanisms are invoked.
First, classical electrodynamics assumes a
step-function profile of the free-electron
density at a metal�dielectric interface. The
finite quantummechanical spill-out21 of the
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ABSTRACT Inspired by recent measurements on individual metallic nanospheres that cannot be

explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal

response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy

loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements,

with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures

of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and

Mie�Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations,

but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not

exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of

bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become

spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic

multipolar plasmons to be measurable on single nanospheres.

KEYWORDS: nonlocal response . nanoplasmonics . EELS . extinction . LDOS . spontaneous emission . multipole plasmons
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electron density redshifts the surface plasmon
resonance,22,23 may give rise to nonresonant field
enhancement,24 and may enable charge transfer be-
tween nontouching plasmonic dimers.18,19,25 Second,
a stronger confinement of the free electrons gives rise
to blueshifts. In cluster physics, it is single-particle
excitations that are blueshifted due to quantum
confinement,26 while confinement in nanoplasmonics
blueshifts collective resonances and gives rise to Frie-
del oscillations in the electron density.27,28 A third,
semiclassical physical mechanism beyond classical
electrodynamics is nonlocal response, discussed in
more detail below, which becomes important when
reducing the particle size or gap size of a dimer down
to the range of the nonlocality29 (ξNL, denoting the
spatial extent of significant nonlocal interaction, to be
introduced shortly), and blueshifts surface plasmon
resonance frequencies.
Large experimental blueshifts of the localized

surface plasmon (LSP) dipole resonance seem to in-
dicate that several physical mechanisms add up.15,30

Certainly, in experiments, all of these physical mecha-
nisms beyond traditional classical electrodynamics are
at work simultaneously, thus emphasizing the impor-
tance of microscopic theories31 (e.g., density functional
theory, DFT) or effective models32 that incorporate
multiple mechanisms. Yet at the same time, it is
important to ascertain the relative strength and com-
patibility of the various mechanisms. Indeed, it is
paramount to know;and to measure;the unique
characteristics of each mechanism, that is to say, find
their individual “smoking guns”, in order to appreciate
the dominant physical mechanisms under different
nonstandard circumstances. We foresee an increasing
number of such decisive experiments on individual
nanoparticles in the near future.
The boundary between cluster physics and nano-

plasmonics is an interesting one. Metal clusters require
a quantum description of interacting electron states,
often studied with DFT. In contrast, nanoplasmonics
could be defined to start for nanoparticle sizes that
allow an effective quantum description in terms of
noninteracting plasmons.28 A current interesting issue
is where to place the origin of the observed blueshift of
the surface plasmon resonance of individual nano-
spheres: is it primarily due to quantum confinement
of single-particle states,14,16 or due to confinement of
collective modes?15,27,28,32 In this article, we assume
the latter and identify new observable consequences.
We focus on nanoparticles that are considered large
enough (2R g 3 nm) that so-called core plasmons,
although collective in nature, can be neglected accord-
ing to DFT calculations.28

Nonlocal response is a semiclassical effect which
emerges in nanoplasmonics at few-nanometer length
scales. Thegeneral nonlocal relationbetween thedisplace-
ment and electric fields, D(r,ω) = ε0

R
ε(r,r0;ω)E(r0,ω)dr0,

becomes simpler and more familiar in the local-response
approximation (LRA), that is, ε(r,r0;ω) = εLRA(r,ω)δ(r � r0).
In many cases, this approximation provides an excellent
effective description due to the short-range nature of the
nonlocal interaction. However, the LRA is not justifiable
when the nonlocal interaction length, ξNL, becomes com-
parable with characteristic feature sizes of structural or
optical kind.29

Here we consider inclusion of the classically ne-
glected Fermi�Dirac pressure of the electron gas. Its
associated pressure waves give rise to a nonlocal
optical response. The simplest way to study the effects
of Fermi pressure in nanoplasmonics is by assuming
a hydrodynamic model,15,33�39 which neglects the
aforementioned spill-out and confinement effects on
the static electron density. In hydrodynamics, the
nonlocal interaction length becomes ξNL = vF/ω,
with VF ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffi
3π2n0

3
p

=m denoting the Fermi velocity,
defined through the effective mass m and free-
electron density n0. This corresponds to ξNL-values in
the range of 2�5 Å for typical plasmonic metals at
optical frequencies; see Table S1 in the Supporting
Information (SI). We will focus on the linearized hydro-
dynamic model here but would like to emphasize that
the full hydrodynamicmodel involves both nonlocality
and nonlinearity, predicting nonlinear effects such as
second-harmonic generation at the surface of metal
nanoparticles for larger field strengths.40�42

The strongest evidence of hydrodynamic behavior
in metals originates from experiments on thin metal
films, where resonances due to standing waves of
confined bulk plasmons have been identified, in silver
by Lindau and Nilsson,43 in potassium by Anderegg
et al.,44 in magnesium by Chen,45 and very recently by
€Ozer et al.46 Rather surprisingly, €Ozer et al.46 could
measure confined bulk plasmon resonances (i.e.,
standing Fermi pressure waves) even for ultrathin
magnesium films of only three atomic monolayers
and found qualitative agreement with theory even
when neglecting electronic spill-out. For nanospheres
on the other hand, the observations of blueshifted
dipole resonances of localized surface plasmons (LSPs)
in individual nanospheres14,15,30 and of broad resonance
features above the plasma frequency in ensembles,47

tentatively suggested as associated with confined bulk
plasmons,33 are perhaps less conclusive evidence of
hydrodynamic behavior. This may in part be due to a
line of reasoningwhich addresses just a single resonance,
namely, the dipole.
Our aim in this article is then to examine theoreti-

cally which phenomena constitute the clearest evi-
dence of hydrodynamic pressure waves in plasmonic
nanospheres and how best to observe them. Powerful
measurement techniques include scattering measure-
ments, as realized for example, in the infrared regime
by Fourier transform infrared spectroscopy (FTIR), scan-
ning near-field optical microscopy (SNOM),48 EELS,49,50
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and fluorescence microscopy techniques, utilizing decay
enhancement of emitters near plasmonic resonances.51,52

In this theoretical article, we systematically explore three
prominent measurement techniques, each with different
excitation sources, namely, the extinction cross section,
the EELS probability, and the electric local density of states
(LDOS). The excitation sources are, respectively, a linearly
polarized plane wave, a traveling electron with kinetic
energy in the kiloelectronvolt range, and an electric dipole
emitter, corresponding to a two-, one-, and zero-dimen-
sional source. The threemeasurementprinciples represent
both far- and near-field types, and we show their spectra
to be qualitatively different.
We investigate not only the strongest (dipolar) LSP

resonance of nanospheres but also higher-order multi-
pole LSPs, as well as bulk plasmons, for all three
measurements considered. We show that hydrody-
namic response leads to a significant spectral separa-
tion of the sphere's multipole plasmons at small radii,
allowing them to extend above the LRA asymptotic
limit at ωp/

√
2. Resonance features above this limit

have already been observed in polydisperse ensem-
bles of nanospheres and previously been interpreted
instead in terms of single-particle confinement.16 We
find significant qualitative disparity between proper-
ties measurable in the far-field (i.e., via extinction) and
in the near-field (i.e., via EELS or LDOS). Our findings
result in concrete suggestions to experimentally ob-
serve hydrodynamic nonlocal phenomena in the near-
field, by identifying themultipolar plasmon resonances
of individual nanospheres of selected metals.

RESULTS AND DISCUSSION

Theoretical Framework. In a linearized hydrodynamic
description, the current density J(r,ω) and the electric
field E(r,ω) are inter-related by the nonlocal relation:53,54

β2F
ω(ωþ iη)

r[r 3 J(r,ω)]þ J(r,ω) ¼ σ(ω)E(r,ω) (1a)

where σ(ω) = iε0ωp
2/(ω þ iη) is the usual Drude conduc-

tivity of a free-electron gas with plasma frequency
ωp, including a phenomenological loss rate η, and βF

2 =
(3/5)vF

2 is the hydrodynamical velocity of plasma pressure
waves in the metal. The hydrodynamic model can be
classified as 'semiclassical' because eq 1a relates the

classical fields J and E via the parameter βF � vF, which

is proportional to p. Hydrodynamic response appears as a
lowest-order spatially nonlocal correction to the local

Ohm's law, with a strength proportional to ξNL
�2k2 in

momentum k-space.
In addition to eq 1a, the electric field must satisfy

the Maxwell wave equation

r�r� E(r,ω) � k20ε¥(ω)E(r,ω) ¼ iωμ0J(r,ω) (1b)

with k0 =ω/c denoting the usual free-space wavenum-
ber and ε¥(ω) the dielectric response of the bound

charges, that is, the response not due to the free-
electron plasma. The sum of the bound- and free-
electron response gives the transverse response of
the metal εM(ω) = ε¥(ω) þ σ(ω)/iε0ω, familiar from
the LRA. For calculations involving a measured trans-
verse metal response εM(ω), the bound response ε¥(ω)
is determined by fixing ωp = (n0e

2/ε0m)1/2, that is,
through the free-electron density n0 and effectivemass
m, thus determining the free response σ(ω) and allow-
ing ε¥(ω) to be determined by subtraction.34

The practical solution of eqs 1 in structures with
curvilinear symmetries can be aided significantly by
expansion in the so-called vector wave functions.
Concretely, a monochromatic electromagnetic field
in a region of uniform dielectric function can be
expanded in the basis composed of the solenoidal,
Mν(r) and Nν(r), and irrotational, Lν(r), vector wave
functions:55,56

E(r) ¼ ∑
ν

aνMν(r)þ bνNν(r)þ cνLν(r) (2)

where ν denotes a composite expansion index with aν,
bν, and cν being associated expansion coefficients. The
functionsMν(r) andNν(r) describe the TE and TM parts,
respectively, of the electric field and describe the
propagation of transverse, or divergence-free,
modes.56 The functions Lν(r) are irrotational and, as
such, are irrelevant in media described by the LRA.
However, their inclusion is indispensable for the treat-
ment of plasmonic nanoparticles by hydrodynamic
response, in order to account for the inclusion of
longitudinal modes.

Next, we consider the case of an arbitrary external
exciting field Eex that originates in an outer dielectric
region and scatters upon a sphericalmetallic particle of
radius R that is centered at the origin. This induces
scattered fields Esc outside the particle and transmitted
fields Etr inside (see Figure 1). For spherical nanoparti-
cles, the choice of multipolar vector wave functions
separates the composite expansion index ν into the
angular momentum quantum numbers l and m; for
details, see the Methods section.

Outside the nanosphere (r> R), the fields Eex and Esc

can be expanded solely in terms of the in- and out-
going transversemultipoles {Mlm

ex,Nlm
ex} and {Mlm

sc ,Nlm
sc },

respectively, since the dielectric region does not sup-
port longitudinal waves. The corresponding expansion
coefficients are {alm

ex, blm
ex} and {alm

sc , blm
sc }. The trans-

mitted field Etr inside the nanosphere (r < R) requires
ingoing transverse multipoles, {Mlm

tr , Nlm
tr }, and also

ingoing longitudinal modes, Llm
tr , which correspond-

ingly necessitates three sets of expansion coefficients
{alm

tr , blm
tr , clm

tr }.
The fields inside and outside the nanosphere

are related by boundary conditions (BCs); see the
Methods section. This translates into linear relations
between the expansion coefficients of the exciting and

A
RTIC

LE



CHRISTENSEN ET AL. VOL. 8 ’ NO. 2 ’ 1745–1758 ’ 2014

www.acsnano.org

1748

scattered fields56,57

asclm ¼ tTEl0 a
ex
l0m0δll0δmm0 , bsclm ¼ tTMl0 bexl0m0δll0δmm0 (3)

where δjk is the Kronecker delta. The proportionality
constants tl

TE and tl
TM are known as the Mie�Lorenz

coefficients.58 For nanospheres with nonlocal re-
sponse, they are given by33,34

tTEl ¼ �jl(xM)[xDjl(xD)]0 þ jl(xD)[xMjl(xM)]0

jl(xM)[xDh
(1)
l (xD)]0 � h(1)l (xD)[xMjl(xM)]0

(4a)

tTMl ¼ �εMjl(xM)[xDjl(xD)]0 þ εDjl(xD)f[xMjl(xM)]0 þΔlg
εMjl(xM)[xDh

(1)
l (xD)]0 � εDh

(1)
l (xD)f[xMjl(xM)]0 þΔlg

(4b)

where xD = kDR and xM = kMR are dimensionless
parameters in terms of the dielectric and transverse
metal wavenumbers (see Methods) and the radius R of
the nanosphere. The primes denote the derivatives
with respect to xD,M. As for the usual Mie�Lorenz
coefficients in the LRA, these hydrodynamic
Mie�Lorenz coefficients are independent of the multi-
pole label m, due to the spherical geometry of the
scatterer. Spatial nonlocality influences the Mie�Lorenz
coefficients through the hydrodynamic term33,34

Δl ¼ l(lþ 1)jl(xM)
εM � ε¥

ε¥

jl(xNL)
xNLjl0(xNL)

(4c)

with xNL = kNLR introducing the longitudinal metal wave-
number (see Methods). As expected, the correction Δl

vanishes in the LRA limit since |xNL|f ¥ as βF f 0. Note
that only the scattering of TM waves is affected by the
inclusionof spatial nonlocality. There areno contributions
to the magnetic field from the longitudinal multipoles
Llm
tr (cf. the Maxwell�Faraday equation), thus leaving
the TE waves, sometimes called the magnetic waves,
unaffected.

The significance of the Mie�Lorenz coefficients is that
they specify the scattering laws outside the sphere; that is,
they determine the outcome of externalmeasurements. In
particular, a general linear measurement O on a nano-
sphere can be expressed as a linear combination of them.
As discussed inmore detail below, all threemeasurements
that we consider can be expressed in the general form

O ¼ ∑
lm

O TE
lmRe(t

TE
l )þO TM

lm Re(tTMl ) (5)

where the coefficients O TE, TM
lm contain all information

regarding themeasurement (e.g., type and position), while

tl
TE,TM contain all information regarding the scattering
geometry (e.g., dielectric composition and size). Crucially,
the inclusion of hydrodynamic nonlocality modifies only
theMie�Lorenz coefficients tl

TM but not themeasurement
coefficients O TE, TM

lm .
For this reason, we can first focus on the

Mie�Lorenz coefficients and look for the local and
nonlocal plasmonic resonances that in principle affect
all measurements. After that, we will identify the
measurements in which these resonances make a
prominent appearance and where the impact of hy-
drodynamic dispersion is especially strong.

Multipole Plasmon Resonances. Figure 2 depicts the
frequency dependence of the first few Mie�Lorenz
coefficients tl

TE,TM of a free-electron R = 2.5 nm nano-
sphere. Clearly, large l multipoles in general scatter
significantly weaker than small lmultipoles (notice the
log scale). In addition, the tl

TM coefficients exhibit a
series of resonances, corresponding to poles of the
coefficient, associated with excitation of LSPs of dipole,
quadrupole, hexapole (and so on) character, for l =
1,2,3,..., respectively. By contrast, the tl

TE coefficients
exhibit no such resonances. Moreover, they are several
orders ofmagnitude smaller than their equalmomenta
TM correspondents. As a result, the TM interaction
dominates the response of plasmonic nanospheres. It
is this dominant TM interaction which is modified by
nonlocal response.

Surface Plasmon Resonance Conditions. A trade-
mark of hydrodynamic response is its blueshift of
resonances as compared to local response. Figure 2
illustrates that for nanospheres these blueshifts
show up in the TM Mie�Lorenz coefficients and are

Figure 2. Absolute value of the Mie�Lorenz coefficients (a)
tl
TE and (b) tl

TM on a logarithmic scale as a function of
frequency for the first few values of l. Considered is a R =
2.5 nm sphere with Drudemetal parametersωp = 10 eV, η =
0.1 eV, and ε¥ = 1 embedded in vacuum, εD = 1. For
comparison, the LRA TM Mie�Lorenz coefficients are illu-
strated as gray dashed lines. Approximate resonance pre-
dictions for LRA and hydrodynamics, as predicted by eqs 7
and 8, are given as dashed and full red lines, respectively.

Figure 1. Sketch of an exciting wave Eex interacting with a
metallic sphere embedded in a dielectric background, giv-
ing rise to scattered and transmitted fields Esc and Etr,
respectively.
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increasingly shifted for larger l.59 We study this quanti-
tatively and find the multipole plasmon resonances of
order l from the pole of the tl

TM coefficient. The non-
retarded limit can be applied to the small spheres under
consideration, leading to the plasmon condition60

lεM þ (lþ 1)(1þ δl)εD ¼ 0 (6)

where δl = Δl/[jl(xM)(l þ 1)] accounts for the hydrody-
namic correction; see SI for additional details. (A similar
multipole plasmon condition was derived in ref 60 for
metallic spheres in vacuum, but with a missing factor of
i/xNL in their equivalent definition of δl.) Evidently, non-
locality can be interpreted as modifying the dielectric
surrounding, by introducing an effective l-dependent
dielectric constant εl,D

eff = (1 þ δl)εD. Since δl is a function
of frequency and angular momentum, eq 6 defines
plasmon resonances only implicitly. Nevertheless, their
spectral location can be determined by approximation
while retaining the essential physics, as we shall show
below.

In the LRA limit δl f 0 and upon neglecting disper-
sion of the bound response and damping, that is,
taking εM(ω) = ε¥ � ωp

2/ω2, the well-known local
electrostatic plasmon resonances are immediately re-
covered from eq 6 as

ωL
l ¼ ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε¥ þ lþ 1
l

εD

r (7)

Thus, in local theory, for l = 1, we find the well-known
(dipolar) LSP resonance ωl

L = ωp/(ε¥ þ 2εD)
1/2, which

reduces to ωp/
√
3 for a free Drude metal sphere in

vacuum. The high-order multipole plasmons tend
asymptotically from below toward the local planar
interface surface plasmon ωp/(ε¥ þ εD)

1/2 for l f ¥,
reducing to ωp/

√
2 for a free Drude metal sphere in

vacuum. The l-dependence of ωl
L as described by eq 7

is depicted by the red dashed line in Figure 2, clearly
showing the asymptotic behavior for large l.

Turning now from local to nonlocal response, let us
assume that δl in eq 6 is a small perturbation, which is
valid for small l and for R . βF/ωp. We circumvent the
implicitness of the resonance condition by making a
pole approximation, replacing the dispersive function
δl(ω) by its value δl

L = δl(ωl
L) in the local resonance

frequency ωl
L, the latter given by eq 7. The hydrody-

namically corrected resonances ωl
NL then occur at

approximately59

ωNL
l =

ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε¥ þ lþ 1

l
(1þ δLl )εD

r = ωL
l þ

βF
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(lþ 1)εD

4ε¥

s
(8)

where, at the last step, in addition to a Taylor expansion
of the square-root term, we have utilized the large
imaginary xNL limit of the hydrodynamic correc-
tion, δl = l[(εM � ε¥)/ε¥]i/xNL, which is applicable at

frequencies below the screened plasma frequency
ωp
¥ t ωp/ε¥. These approximate nonlocal surface

plasmon resonance frequencies are illustrated by the
solid red line in Figure 2. The approximation captures the
exact nonlocal blueshift well but is less accurate for larger
l, as expected. By implication of these nonlocal blueshifts,
excitations appear between the LRA l = ¥ mode (the
planar surface plasmon) and the volume plasmon at ωp,
classically a resonance-free frequency interval.16

Bulk Plasmon Resonance Condition. Besides blue-
shifting the multipolar LSP resonances that already
exist in the LRA, hydrodynamical theory also predicts
the appearance of additional resonances due to con-
fined bulk plasmons for which no LRA counterparts
exist.33,54 More microscopic theories have also pre-
dicted the emergence of such bulk plasmons.28,31

These bulk plasmons emerge due to the presence of
propagating longitudinal pressure waves above the
plasma frequency. In hydrodynamics, the confined
bulk plasmons are then easily interpreted as the standing
wave resonances of longitudinal waves. Table 1 depicts
isosurfaces of the induced charge density for LSPs and
bulk plasmons for comparison.

An approximation for these bulk resonances can be
found by neglecting the coupling of the pressure
waves to light, that is, by searching for standing wave
solutions of Llm

tr , thus neglecting the transverse com-
ponents. For nanospheres, this gives radially quantized
confined bulk plasmons resonating at the frequencies
ωln
bulk (see SI for details):

ωbulk
ln (ωbulk

ln þ iη) ¼ ω2
p

ε¥
þw2

ln

βF
R

� �2

(9)

wherewln is the nth positive root of jl
0
(w), the derivative

of the lth-order spherical Bessel function (see refs 33
and 61 for lengthier, more accurate approximations).
Modes associated with the first root at n = 0 are in fact
not resonant but are artifacts of the approximation that
arise due to having neglected the transverse field
components. Regardless, for every multipole order l,
there is an infinite number of confined bulk plasmons
associated with n = 1, 2, etc.

As for the LSP resonances, we first illustrate the
signature of these bulk plasmons in the Mie�Lorenz
coefficients before considering the experiments in
which their presence is most pronounced. In Figure 3,
we depict the frequency dependence of the first few
Mie�Lorenz transmission coefficients ql

L near and above
ωp. These coefficients give the transmission amplitude to
a longitudinal mode due to excitation by an incident TM
mode and are defined analogously to the scattering
coefficients tl

TE,TM of eq 3 through clm
tr = ql 0

L bl 0m 0ex δll 0δmm 0

(see SI for their explicit form). The first dipolar and
quadrupolar bulk plasmon resonances of a nanosphere
clearly show up as Lorentzian resonances, and the
bulk plasmon approximation (eq 9) is quite accurate.
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The resonant charge distributions in the insets illustrate
the radial quantization of the confined bulk plasmons. To
thebest of our knowledge, only thedipole (l=1) confined
bulk plasmons have been considered previously, for
example, in relation with extinction features above the
plasma frequency in nanospheres.33,54 In our investigation

of EELS and LDOS below, we consider additionally if
these higher-l bulk plasmons may influence the spec-
tral response in the near-field. First, however, we
discuss the properties of higher-order LSP multipoles.

Large-l Plasmonic Resonances. We have seen in
Figure 2 that multipolar hydrodynamic LSP modes
blueshift away from the classical limit, the LRA planar
surface plasmon at ωp/

√
2. What is more, Figure 4

illustrates that high-multipole nonlocal LSP resonances
can even appear above the plasma frequency ωp.
There is no indication that the plasma frequencywould
mark a qualitative transition. This is despite the change
from predominantly imaginary metal wavenumbers
(kM and kNL) for frequencies ω < ωp

¥ to predominantly
real metal wavenumbers for ω > ωp

¥. In particular, the
transition from predominantly imaginary to real wave-
numbers does not carry with it a transition from
predominantly bound surface modes to volume-like
modes as assumed in the past.36 [Such a transition
does not emerge since |xnl| remains comparative with
(l þ 1)1/2, which, cf. eqs 11 and the small-argument
asymptotic form jl(x)= xl/(2lþ 1)!! valid for |x|, (lþ 1)1/2,
implies that |jl(x)| ∼ |jl(ix)| for |x| > |xNL|, whereby the
charge density is left qualitatively unchanged and
surface-bound.] Hydrodynamic surface plasmons
above the plasma frequency have also been found
theoretically for a planarmetal�dielectric interface, for
a thin metal slab, and for planar metamaterials.63,64

It is fruitful to pursue further the analogy between
the LSPs of our nanospheres and of planar structures.
The analogy is well-known for local response, but the
hydrodynamic version holds a surprise. The large-l LSP

Figure 4. Absolute value of the TM Mie�Lorenz coeffi-
cients, tl

TM, on a logarithmic scale, as a function of frequency
for high-angular momenta. Setup parameters are identical
to those in Figure 2. Hydrodynamic results are illustrated as
blue solid lines, while LRA results are illustrated as gray
dashed lines for comparison. The transition across the
plasma frequency is marked by the black dashed line. The
red line depicts the approximate LSP resonance of eq 8; the
green lines show eq 9 and approximate the first few
confined bulk plasmon resonances. The bulk plasmons
show up as Fano-like resonances in |tl

TM|.62

Figure 3. Absolute value of the Mie�Lorenz transmission
coefficients ql

L on a logarithmic scale as a function of
frequency. The coefficients give the coupling amplitude
between transmitted longitudinal multipoles and incident
TM multipoles. Setup parameters are identical to those in
Figure 2. Shown are the dipolar, q1

L, and the quadrupolar, q2
L,

coefficients in blue. Both exhibit peaks above ωp, corre-
sponding to a series of confined bulk plasmons labeled by
n = 0, 1, 2,.... Green curves show approximate resonance
positions; see eq 9. The absence of an n = 0 resonance is
apparent. Insets depict logarithmic scale contour plots, with
contours separated by factors of 2, of the absolute value of
the induced charge density of the bulk resonances, with [l,n]
indices labeled, in the xz plane.

TABLE 1. Charge Densities of Multipole Surface and Bulk

Plasmonsa

a Isosurfaces are drawn for the real part of the charge density, calculated in a
hydrodynamic treatment, at isovalues equal to plus/minus (red/blue) twice the
mean of the absolute value of the charge density in the sphere. The nanosphere
outline is indicated in shaded gray.
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resonances below and above the plasma frequency
can both be characterized by wave propagation along
the surface of the nanosphere. The lth surface mode
accommodates exactly l oscillation periods along the
periphery of the sphere. One can therefore ascribe an
effective surface wavelength λl

s = 2πR/l and an effective
surface wavenumber kl

s = l/R to the lth mode. For larger l,
the effectivewavelength becomes shorter and themodes
perceive the curving surface of the sphere as increasingly
flat. For that reason, the dispersion would mimic that of a
planar metal�dielectric interface for large l.

To test this prediction from the analogy, we com-
pute the exact plasmon resonances from eq 6 and
show them in a pseudodispersion plot in Figure 5. For
local response, Figure 5 indeed shows the well-known
result that for larger l the dispersion of the nanosphere
LSPs approachesmore andmore that of a flat interface.
For nonlocal response, also shown in Figure 5, we first
note that the LSP dispersion indeed does not show a
transition at the plasma frequency, as we already
guessed from Figure 4. Second, there is satisfactory
agreement of the hydrodynamic dispersion of LSPs for
a nanosphere and for the flat interface, so the analogy
is also meaningful for hydrodynamic response. How-
ever, and this is the surprising third point, unlike for
local response, the agreement does not converge
toward a complete agreement as l increases: a discre-
pancy develops for large l. The discrepancy is larger in
Figure 5a for R = 2.5 nm spheres than for the twice
larger spheres in Figure 5b.

This can be explained by noting that in the LRA all
the induced free charge resides only on the surface of
the sphere, whereas it is distributed close to this surface
in the hydrodynamic description. The latter is illus-
trated in Figure 5c. Note the surficial standing wave
quantization of the LSPs in Figure 5 and also the
absence of radial quantization, being associated only
with the bulk plasmons as shown in Figure 3. For large l,
the neighboring hydrodynamic charge patterns in
Figure 5 get squeezed into each other due to the finite
curvature, producing the discrepancy with the planar
interface. An alternative explanation of the discre-
pancy as due to interaction across antipodal surface
points can be ruled out since the insets of Figure 5a,b
show that the electric fields corresponding to high-l
modes are well-localized near the surface of the nano-
sphere, even those above the plasma frequency (in
contrast to predictions of ref 36), so that fields on
opposite angular regions of the sphere are spatially
well-separated. This agrees with recent findings for
hydrodynamic LSP modes in a planar thin metal slab,
which do not show finite size effects either for suffi-
ciently large wavevectors. Rather, since the slab has no
curvature, the large-k dispersion of its LSP modes does
indeed agree with that of the single interface.63

Extinction, EELS, and LDOS. Having discussed the char-
acteristics of the multipole plasmons, and in particular

the modifications due to hydrodynamic response, we
will now consider three distinct measurements, each
with a different sensitivity to the various surface and
bulk plasmons:

1. Light scattering. This measurement gives the
extinction cross section σext(ω), yielding the ratio
of power dissipated due to scattering and ab-
sorption of a plane wave relative to incident
intensity.

2. Electron energy-loss spectroscopy. EELS gives
information on the electron loss function Γ(ω)
that expresses the probability that a relativistic
electron will lose an energy pω due to interac-
tion with the particle. We consider electrons
traveling with velocity vẑ and impact parameter
b in the xy plane outside the sphere (|b| = b > R).

3. Atomic spontaneous emission. A dipole orien-
tation-averaged measurement of local sponta-
neous emission rates relates linearly to the
electric local optical density of states (or LDOS)
FE(ω). We consider emitter positions b outside
the nanosphere (b > R).

These three measurements constitute examples
of illumination of the sphere by plane-, cylinder-, and
spherical-like waves. Extinction is measured in the

Figure 5. Dispersion of the nonretarded surface plasmon
resonances of nanospheres. Material parameters as in
Figure 2 but with η = 0. Wavenumbers are normalized to
the plasma wavenumber kp = ωp/βF. The hydrodynamic
model is shown in blue and the LRA in gray. The l = 1, 4, 7, ...,
34 multipole LSP resonances are indicated by squares and
circles; nonretarded dispersion relations64 for a planar inter-
face are shown as solid lines. Insets in panels (a) and (b)
show the real parts of the electric field of selected LSP
modes in the xz plane along θ polarization (on separate
color scales). (c) Contour plots of the absolute value of the
hydrodynamic charge density of selected LSP modes in the
same nanosphere and in the same plane (contours sepa-
rated by factors of 10 with separate, and logarithmic color
scales).
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archetypical far-field scattering setup, while the EELS
probability and LDOS can be measured locally in the
near-field. Subnanometer control of the probe�
surface separation is routinely achieved in EELS49 and
also demonstrated in fluorescence measurements,65,66

permitting experimental investigation of the various
calculated spectra that we will show below.

Let us briefly discuss the computation of these
measurements in the multipole basis. The arbitrary
exciting field can be decomposed into the multipole
basis; that is, the coefficients {alm

ex, blm
ex} can be deter-

mined. The scattered field is then obtained through the
Mie�Lorenz coefficients using eq 3. A general linear
measurement O may involve components of the
scattered field at a single location, as for the LDOS, or
a continuous weighting of different spatial compo-
nents of the field, as for the extinction cross section
or the EELS probability. In any case, the measurements
can be expressed through aweighted lm summation of
the scattering amplitudes tl

TEal
ex and tl

TMblm
ex. As stated

above, for the extinction cross section,67 EELS pro-
bability,68,49 and LDOS,69�73 the measurements O
can all be expressed in terms of the Mie�Lorenz coeffi-
cients in the general form of eq 5. For the specific forms
that eq 5 takes for each of the three measurements, we
refer the reader to eqs S3, S6, and S9 of the SI.

In the following, we normalize the extinction cross
section to the geometric cross section, πR2, yielding
the extinction efficiency Qext(ω) t σext(ω)/πR

2, and
similarly normalize the LDOS to the free-space LDOS
F0E(ω), yielding the LDOS enhancement [FE/F0E](ω).

Near-Field versus Far-Field. Figure 6a depicts the
probe-to-surface separation dependence of the LDOS
and EELS spectra in a Drude metal nanosphere of R =
1.5 nm and for comparison also depicts the extinction
resonances. Hydrodynamic and LRA calculations are
shown to be distinctly different. Most conspicuous in
Figure 6a is perhaps thatmany new resonances appear
in the nonlocal EELS and LDOS spectra, many more
than in extinction, and that drastic changes occur
when we vary b/R from the contact scenario b/R = 1
to b/R = 4.5. When fixing b/R = 2, we obtain the spectra
of Figure 7a. Below we discuss both figures in more
detail, but before that, Figure 6a already makes clear
that only a rudimentary understanding of EELS mea-
surements can be obtained by comparing them with
calculated extinction or absorption spectra. Such com-
parisons have nevertheless been quite common.14,15

Let us interpret Figures 6a and 7a in more detail by
first discussing the region below the plasma frequency,
where both in local and nonlocal response the extinc-
tion efficiency exhibits just the single dipolar (l = 1)
surface plasmon resonance. Higher-order multipole
plasmons do not contribute since the sphere size is
much smaller than the wavelength of the incident
plane wave.33

In stark contrast to these known extinction spectra,
several additional multipole LSP resonances are ob-
servable in the EELS and LDOS spectra and better so for
smaller probe-to-surface separations. Notice that higher-
order LSPmodes do exist in the LRA, aswe have seen in
the analysis of the Mie�Lorenz coefficients, but these

Figure 6. Normalized LDOS, FE/F0E, EELS probability, Γ, and extinction efficiency, Qext, in left, center, and right panels,
respectively. LDOS and EELS calculations are illustrated on independent logarithmic color scales. An R = 1.5 nm sphere in
vacuum is considered. Electron energy in EELS calculations is Ee=200 keV. (a) Drudemetalwithωp = 10 eV,η=0.1 eV, and ε¥=1.
(b) Aluminum with bound response included from measured data from ref 74 via ε¥(ω), with ωp = 14.94 eV and η = 0.075 eV.
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additional LSP resonances converge toward the
l = ¥ limit at ωp/

√
2 and rapidly become indistinguish-

able due to losses. By contrast, the higher-order LSP
resonances are much more clearly visible in the hydro-
dynamic spectra because of the l-dependent nonlocal
blueshift of eq 8, which pushes the multipole reso-
nances in the EELS and LDOS spectra beyond the LRA
l = ¥ limit and moreover separates them despite the
loss-induced broadening.37,38

Observation of a multipolar resonance above the
l = ¥ limit was reported by vom Felde et al.16 in EELS
measurements on ensembles of potassium clusters of
radius 1�2 nm embedded in magnesium oxide. Vom
Felde et al. attributed this blueshift into the classically
quiet region to quantum size effects. Here we show
that there is a good alternative explanation, namely,
collective hydrodynamic multipolar LSP resonances.
Thus the ongoing discussion how to interpret the
blueshift of the main dipolar LSP resonance as seen
in EELS14,15,32 can now be extended to higher-order
LSP resonances, observable in both EELS and LDOS
measurements. This improves the outlook of obtaining
conclusive evidence for hydrodynamic behavior in
plasmonic nanospheres.

Importantly, our calculations performed for alumi-
num (ωp = 14.94,eV) in Figures 6b and 7b, using
measured data from ref 74, confirm the feasibility of
measuringmultipole resonances beyond the l =¥ limit
for realistic (i.e., non-Drude) metals: at least 4 orders of
surface plasmons besides both dipole and quadrupole
bulk plasmons are discernible. The nanosphere radius
considered in Figures 6 and 7 is, however, relatively
small at R = 1.5 nm. While consideration of such small
nanospheres eases interpretation and labeling, it also
approaches the emergence of the realm of cluster
physics. Nevertheless, similar spectral features persist
for larger spheres, upholding the pertinence of the

analysis. Supporting calculations for R = 3 nm nano-
spheres are presented in the SI.

We emphasize that one should not view the results
in Figures 6b and 7b as being fully representative of
experiments: the semiclassical plasma-in-a-box hydro-
dynamic model necessarily cannot contain all relevant
physics. In particular, it is known that the nonlocal
blueshift of the dipolar SPP for aluminum spheres in
vacuum will be more than fully compensated by a
redshift due to electronic spill-out.75

However, for higher-order multipoles, we expect
that the centroid of the induced charge will be pushed
inward at larger multipole orders, and that nonlocality
will come to dominate the effects of spill-out. These
considerations are supported by calculations in ref 22
on planar simple metal surfaces, which show that the
induced charge recedes to the interior of the metal
at large momentum transfers, equivalent to high-
multipole order. This indicates that spill-out does not
undo our prediction that higher-order SPP resonances
will be well-separated due to nonlocal response and
thus suggests a novel direction for identification of
hydrodynamic behavior in nanospheres. The key fea-
tures of our theoretical near-field spectra for aluminum
are encouraging in this respect. Accordingly, experi-
mental investigation and further theoretical study with
more microscopic models is highly desirable.

Additionally, we note that electronic spill-out is not
a property of the metal nanoparticle alone but also of
its surrounding dielectric, in a similar way that the
atomic spontaneous emission rate is not a property
of the atom alone but also of its electromagnetic
environment. This gives additional experimental free-
dom: by embedding metal spheres into a solid matrix,
electronic spill-out can be controlled and the asso-
ciated redshift suppressed.16 A high-index dielectric
surrounding can significantly reduce the electronic

Figure 7. Extinction efficiency,Qext, EELS probability, Γ, and normalized LDOS, FE/F0E. Hydrodynamics in solid blue and LRA in
dashed gray. The screened plasma frequency is indicated in dashed-dotted black. When distinguishable, the LSP multipole
order l is noted in red, while bulk plasmon [l,n] orders are noted in green. Parameters in (a) are as in Figure 6a; in (b) as in
Figure 6b. The EELS probability and LDOS are computed for b/R = 2 in all three cases.
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spill-out, even in simple metals. Thus with high-index
background dielectrics, our plasma-in-a-box model is
expected to be more accurate. The key effects of a
nonunity background dielectric function on the SPP
and bulk plasmon resonances of Figures 6 and 7 can be
readily discerned from eqs 7�9.

As further promising experiments, we propose to
use the same materials as in ref 16, namely, potassium
(or Na or Rb) nanospheres in an MgO matrix, but now
for doing EELS on an individual nanosphere, so that
inhomogeneous broadening would no longer obscure
individual multipolar peaks. Similarly, rather than uti-
lizing a continuous embedding matrix, it may be
feasible to suppress the electronic spill-out just by
coating the nanospheres with a suitable dielectric,
thereby also providing protection from oxidization.

The higher-order LSPs that we propose to observe
were not seen in the recent EELS measurements on
silver nanospheres of refs 14 and 15. This agrees with
calculations performed by us for silver, which are
detailed in the SI: due to strong interband effects,
higher-order multipole LSP resonances are obscured
even in individual Ag nanospheres.

Above the plasma frequency, two hydrodynamic
peaks can be seen in the (identical) extinction spectra
of Figures 6a and 7a. They clearly have no analogue in
the LRA and correspond to the first two dipolar con-
fined bulk plasmon resonances, with labels [l,n] = [1,1]
and [1,2] that we also identified in the hydrodynamic
Mie�Lorenz coefficients in Figure 3. They have first
been predicted by Ruppin to exist in the extinction
spectrum.33 Interestingly, in the EELS and LDOS spectra
of Figures 6 and 7, we see more resonances above the
plasma frequency than the two dipolar bulk plasmons
of the extinction spectrum. According to our investiga-
tions of the Mie�Lorenz coefficients in Figures 3 and 5,
these additional resonances in principle could be
either high-l LSP resonances or quadrupolar and high-
er-order bulk plasmon resonances. They all turn out to
be bulk plasmons and are therefore labeled accord-
ingly; the high-l LSP resonances are much weaker and
absent in the spectrum.

Better than observing shifts in LSP peaks, observing
the confined bulk plasmon peaks would constitute a
unique identification of hydrodynamic pressure waves
in nanospheres. However, since we find them to be
three orders of magnitude weaker than the dipolar LSP
resonance, actually the same order of magnitude weaker
as found in recent density functional calculations,28 they
are difficult to measure in nanospheres. To our knowl-
edge, they have not yet been observed (unlike their
counterparts in thin films), so to date, bulk plasmons
are “non-smoking guns” of hydrodynamic pressure
waves in nanospheres.

Overall, Figures 6 and 7 illustrate the importance
of the dimensionality of the excitation source. As is well-
known, the planewave used in extinctionmeasurements

only excites dipole resonances in deeply subwavelength
spheres. As to the EELS spectra, the one-dimensional
source of a traveling electron excites a cylinder-like field,
which for short probe-to-surface separations is suffi-
ciently inhomogeneous to excite higher-order (l > 1)
plasmons, as well. Lastly, the LDOS spectra illustrate the
largest sensitivity to the multipole modes, with all LSPs
discernible and significant response from several bulk
plasmon orders. The spherical-like field of the zero-
dimensional dipole induces locally a more inhomoge-
neous excitation field than the traveling electron, thus
accounting for the increased multipole sensitivity in
LDOS compared to EELS. At large probe�surface separa-
tions shown in Figure 6, the exciting fields in both EELS
and LDOSare almost homogeneous near the sphere, and
the response due to higher-order multipoles is dimin-
ished. As a consequence, for large probe-to-surface
separations, the spectral response in extinction, EELS,
and LDOS is qualitatively the same. See SI for analytical
considerations of this latter point, regarding the asymp-
totics of the LDOS and EELS spectra.

Distance Dependence of LDOS. In the preceding
sections, we established that the response of high-
order plasmons is significantly enhanced with probes
of low-dimensionality when examined in the near-
field, where the observability of multipolar LSPs is
enhanced by hydrodynamics. Let us therefore finally
focus solely on the LDOS spectra, where the response
of these high-order multipoles is most pronounced. In
Figure 8, we display the variation of the LDOS spectra
as a function of the probe-to-surface separation, vary-
ing from b/R = 1 (i.e., source on surface) to b/R = 5
(10 nm separation). For the panels with b/R < 2,
contributions from high-order multipoles are increas-
ingly important, as the excitation ofmultiple LSP orders
contribute to the spectrum.76 Consequently, in the
LRA, the largest LDOS occurs at ωp/

√
2, the limiting

frequency of the high-order LSPs, coinciding with the
pile-up of LRA multipoles. By contrast, the hydrody-
namically blueshifted LSPs do not have a finite limiting
frequency or an associated similar pile-up of modes,
but instead exhibit distinguishable peaks associated
with excitation of different multipoles. The qualitative
discrepancy between local and nonlocal spectra is
even substantial. For larger spheres, the multipole
peaks merge and instead give rise to a broad-band
enhancement above ωp/

√
2, even extending beyond

the plasma frequency; see SI for supporting calcula-
tions on an R = 10 nm sphere. This suggests a hitherto
largely unexplored regime of studying nonlocal re-
sponse in comparatively large nanostructures but at
short surface-to-probe separations.

As is well-known, in the extreme limit b = R, the LRA
LDOS diverges (hence not shown) due to the 1/(b� R)3

scaling of the nonradiative decay rate. For the b/R = 1
panel of Figure 8, we obtain convergent results for the
hydrodynamic response and associated finite LDOS
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spectra. The convergence, however, hinges upon the
choice of a simple Drude metal with real-valued ε¥, as
discussed in ref 77. As such, hydrodynamic response
does not fully regularize the divergence of the LDOS for
real metals with dissipative bound response. Com-
plete regularization in real metals would likely ne-
cessitate an appropriate nonlocal treatment of not
only the free response but also the bound response.
In addition, for these very close proximities between
source and nanosphere, the effect of high-order
moments;beyond the dipole;of the source itself,
due to the finite size of the source, would certainly
modify the decay rates, as well.78 For emitters at the
larger separations (e.g., in the panel with b/R = 5), the
dipole mode of the nanosphere is again the primary
feature but with the quadrupolar LSP still imposing a
significant spectral feature.

CONCLUSIONS

In this paper, we have aimed to identify indisputable
signatures of hydrodynamic response in plasmonic
nanospheres. The corresponding evidence for layered
systems is the observation, found both with light43,44

and with electrons,46 of confined bulk plasmons in thin
films. Employing the hydrodynamic Drude model, we
predict the existence of confined bulk plasmons also in
nanospheres. An important question then is whether
such excitations would be observable. A series of con-
fined bulk plasmons of dipolar character have been
predicted before to show up in extinction spectra.33

Here we additionally found that besides the dipole
series, also series of quadrupolar and higher-order bulk
plasmons emerge in near-field EELS and LDOS spectra.
However, we find the strength of these bulk plasmon
resonances in nanospheres to be about three orders of
magnitude weaker than the dominant LSP peak. Their
experimental observation in nanospheres, for example
with EELS or LDOS, remains an open challenge. Another
promising technique is core-level photoemission.46

Of a more immediate, accessible nature experimen-
tally is our prediction that, in the near-field EELS and
LDOS spectra, also quadrupolar and higher-order LSPs
appear, besides the well-known dominant dipolar
LSPs. In itself, it is no surprise that higher-order LSPs
show up in near-field spectra because the LRA predicts
them already.76 The salient point here is that LRA LSPs
exhibit the surface plasmon ωp/

√
2 of a planar inter-

face as a limiting upper frequency, while we predict
hydrodynamic LSPs to be observable also above
ωp/

√
2. This follows from our prediction that higher-l

plasmons exhibit a larger nonlocal blueshift. Indeed,
we found that high-l LSPs in principle can occur above
the plasma frequency in few-nanometer spheres, with
their mode profiles still well-bound to the surface. An
upper limiting frequency for LSPs actually does not
exist in the hydrodynamic model.
Not all multipolar LSPs will be observable, though.

For silver, we predict all LSPs besides the dipolar one to
be suppressed due to interband effects. On the other
hand, we predict that for aluminum nanospheres
several higher-order LSPs should be observable in
near-field EELS and LDOS spectra. In ensembles of
alkali metal (Na, K, Rb) nanospheres in a MgO matrix,
resonances above the LRA limit ωp/

√
2 have actually

already been observed, but individual resonance peaks
could not be resolved due to ensemble averaging.16

We propose to do these measurements on individual
alkali metal nanospheres, something that has already
been achieved with silver nanospheres.14,15

Would such measurements constitute the unequi-
vocal evidence, the “smoking gun”, of hydrodynamic
nonlocal response in nanospheres that we set out to
identify? We can only suggest 'perhaps' at this stage
because alternative explanations for resonances above
ωp/

√
2 do exist. In particular, vom Felde et al. invoke

quantum confinement (cluster physics) rather than
hydrodynamics (nanoplasmonics) to explain their in-
triguing observation of resonances above the LRA
limit.16 It is safe to assume, however, that fitting the two
distinct models to a measured series of LSP resonances
will be more conclusive than fitting only the dominant
dipolar LSP, which remains state-of-the-art.14,15,32 We
therefore suggest to measure near-field EELS and LDOS
spectra of nanospheres of aluminum and alkali metals
embedded in a solid dielectric environment.
The plasmonic resonances emerge with strikingly

different weights in the three types of spectra that we

Figure 8. Normalized LDOS for different probe-to-surface
separations in hydrodynamic and LRA treatments, in solid
blue and dashed gray, respectively, for a Drude metal with
material parameters as in Figure 6a, for a R = 2.5 nm sphere.

A
RTIC

LE



CHRISTENSEN ET AL. VOL. 8 ’ NO. 2 ’ 1745–1758 ’ 2014

www.acsnano.org

1756

calculated, so that for example the state-of-the-art
comparison of EELS experiments with theoretical ab-
sorption cross sections14 or extinction cross sections15

can be of limited use. The comparison happened to be
useful for silver nanospheres,14,15 where interband
effects suppress the beyond-dipole LSP resonances
that otherwise would show up in near-field EELS and
LDOS experiments.

Even for the relatively simple hydrodynamic theory
that we used here, the near-field spectra of nano-
spheres become rather elaborate and rich;but they
can be understood rigorously. We therefore expect
that our results could also assist in the interpretation of
near-field spectra calculated with more microscopic
calculations, with some features attributable to hydro-
dynamic nonlocal response.

METHODS
Hydrodynamics and Multipole Basis. By eliminating the current

density in eqs 1, the hydrodynamic equations can be recast
solely in terms of the electric field:

(r2 þ k2M)r� E(r,ω) ¼ 0 (10a)

(r2 þ k2NL)r� E(r,ω) ¼ 0 (10b)

where kM
2 = k0

2εM and kNL
2 = (ωp/βF)

2εM/[ε¥(ε¥ � εM)] denote the
transverse and longitudinal wavenumbers in the metal, respec-
tively. The transverse response of the metal is governed by
εM(ω) = ε¥(ω) � σ(ω)/iε0ω.

The vector wave functions, Mν(r), Nν(r), and Lν(r), are
defined in terms of a pilot vector c and a generating scalar
function ψν(r), satisfying the Helmholtz equation 32ψν(r) þ
k2ψν(r) = 0. In spherically symmetric structures, it is natural to
express the generating functions in spherical coordinates r =
(r,θ,φ) and to choose the pilot vector as the (nonconstant)
outward radial vector c = r. In this case, the degeneracy label
ν separates into the angular momentum quantum numbers l
and m, and the vector wave functions read as

Mlm(r) ¼ r� rψlm(r) (11a)

Nlm(r) ¼ 1
k
r�r� rψlm(r) (11b)

Llm(r) ¼ 1
k
rψlm(r) (11c)

with ψlm(r,θ,φ) = zl(kr)Pl
m(cos θ)eimφ, where zl denotes spherical

Bessel or Hankel functions of the first kind, jl or hl
(1), for in- and

outgoingwaves, respectively. Finally, Pl
m denotes the associated

Legendre polynomials. In addition, by requirements of conti-
nuity along φ and boundedness at the polar extremes, the
angular momentum quantum numbers are restricted to integer
values in the ranges l ∈ [1,¥[ andm ∈ [�l,l]. This particular basis
is usually referred to as the multipole basis.

Thek-dependenceof thevectorwave functionsused in thefield
expansions varies inside and outside the sphere. By insertion of the
external field into the vector Helmholtz equation, 32E þ kD

2E = 0,
which is valid outside the sphere, it is clear that the appropriate
choice of wavenumber is kD ¼ ffiffiffiffiffi

εD
p

k0 outside the sphere. Simi-
larly, by insertion of the internal field into eqs 10, it is clear that the
solenoidal vector waves Mlm

tr and Nlm
tr inside the sphere are asso-

ciated with the transverse wavenumber kM, while the irrotational
vectorwaveLlm

tr is associatedwith the longitudinalwavenumber kNL.
Finally, the matching of internal and external expansions is

facilitated by application of BCs. The usual BCs for the electro-
magnetic field requires the continuity of the tangential compo-
nents of the electric andmagnetic field at r = R, that is, E )

exþ E )

sc =
E )

tr andH )

exþH )

sc =H )

tr. Furthermore, an additional BC is required to
account for the presence of the longitudinal waves inside the
metal, which, in the case of an abrupt dielectric boundary, is
unambiguously chosen as the continuity of the normal compo-
nent of the induced current, equivalent to the continuity of the
normal component of the bound charge depolarization at r = R,
corresponding to εDE^

ex þ εDE^
sc = ε¥E^

tr.53,63
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